
David E. Keyes

Center for Computational Science
Old Dominion University

Institute for Computer Applications in Science & Engineering
NASA Langley Research Center

Institute for Scientific Computing Research
Lawrence Livermore National Laboratory

The Terascale Optimal PDE Simulations
(TOPS) Project of the Scientific Discovery
through Advanced Computing (SciDAC)

Initiative

Introduction to TOPS

Related URLs
� Personal homepage: papers, talks, etc.

http://www.math.odu.edu/~keyes

� SciDAC initiative
http://www.science.doe.gov/scidac

� TOPS software project
http://www.math.odu.edu/~keyes/scidac

� PETSc software project
http://www.mcs.anl.gov/petsc

� Hypre software project
http://www.llnl.gov/CASC/hypre

Slides from 14-hour Peking
University CS&E short
course with Bill Gropp now
on-line

Introduction to TOPS

Context of this presentation
� Directly related to presentations on:

� PETSc (today)
� Hypre (today)
� TAO (today)
� SuperLU (Wednesday)
� SUNDIALS (Friday)

� Closely related to other SciDAC talks:
� TSTT (Friday)
� APDEC/Chombo (Friday)
� CCA (Friday)
� PERC/TAU (Friday)

Introduction to TOPS

Context of this presentation, cont.
� Unlike most of these related talks, this one is

not a tutorial presentation on a presently
click-downloadable library toolkit

� It motivates and describes an integration-in-
progress of several of these earlier developed
and independently successful toolkits

� Implication: I get to philosophize about the
solver software of the near future, to plan
the rendezvous with apps scientists (you)

Introduction to TOPS

Amalgam of two talks
� Part I: methods for implicit nonlinear solvers for

coupled PDEs, as an example of the need for
polyalgorithmic, polymorphic toolkits such as
PETSc and Hypre

� Algorithmic background: fundamental iterative
algorithms of Krylov, and Newton-Krylov (NK) –
building blocks for parallel implicit PDE software

� Focus: application- and operator-oriented extensions
to the NK framework

� Part II: balanced overview of TOPS, including
other functionality (linear solvers, eigensolvers,
etc.)

Introduction to TOPS

Primary reference for Part I
� “Jacobian-Free Newton-Krylov Methods:

Approaches and Applications”
� Above-titled article with Dana Knoll of LANL will

appear in the Journal of Computational Physics
� Review of Newton-Krylov algorithms
� Applications to problems in:

� aerodynamics
� plasma physics
� combustion
� radiation transport
� geophysics

� Discussion of some “tricks of the trade”

Introduction to TOPS

Target application properties
� Multirate

� requiring fully or semi-
implicit in time solvers

� Multiscale
� requiring finest mesh spacing

much smaller than domain
diameter

� Multicomponent
� requiring physics-informed

preconditioners, transfer
operators, and smoothers

PEP-II cavity model, c/o Advanced Computing
for 21st Century Accelerator Science &

Technology SciDAC group

� Not linear
� Not selfadjoint
� Not structured

FUN3D Slotted Wing model, c/o Anderson et al.

Introduction to TOPS

Nonlinear solver philosophy
� The Newton-Krylov family of algorithms uses the Jacobian in two

very different ways – to evaluate the linear residual and to
precondition the linear residual

� In conventional Newton algorithms and nonlinear solver software,
these two functions are unnecessarily combined into a single sparse
matrix data structure whose elements are explicitly stored

� Jacobian-free Newton-Krylov encourages the use of two different
sources for the action of the Jacobian, one for each purpose

� an accurate Jacobian - for solution quality
� an approximate Jacobian - for flexibility and performance

� This has been built into the structure of PETSc from the beginning
of PETSc’s nonlinear functionality

� This opens the door for use of physics-based preconditioning, while
retaining asymptotic Newton convergence

Introduction to TOPS

Algorithmic requirements
� After modeling and spatial discretization, we end

up with large nonlinear algebraic system
(which could come from , after
implicit temporal discretization, at each time step)

� For PDEs, the Jacobian matrix is sparse
� Each equation comes from a local flux balance
� In unsteady case, timestep improves diagonal dominance

� For conservation law PDEs, there is a hierarchy of
successively coarser approximate discretizations
available (e.g., fusing control volumes)

� Discrete Green’s function is generally global, with
decaying tail

0)(=uF
0),,(=tuuf �

)(' uF

Introduction to TOPS

Recall Newton methods
� Given and

iterate we wish to pick such that

where
� Neglecting higher-order terms, we get

where is the Jacobian
matrix, generally large, sparse, and ill-
conditioned for PDEs

� In practice, require
� In practice, set where is

selected to minimize

nnFuF ℜ→ℜ= :,0)(
0u 1+ku

0)()()('1 =+≈+ kkkk uuFuFuF δ
,...2,1,0,1 =−= + kuuu kkkδ

)()]([1 kkk uFuJu −−=δ
)(' kuFJ =

εδ <+ ||)()(|| kkk uuJuF
kkk uuu λδ+=+1 λ

||)(|| kk uuF λδ+

Introduction to TOPS

Recall Krylov methods
� Given and iterate , we

wish to generate a basis for
x () and a set of coefficients
such that is a best fit in the sense that
minimizes

� Krylov methods define a complementary basis
so that

may be solved for
� In practice and the bases are grown from

seed vector via recursive
multiplication by and conjugation or
orthogonalization

nnAbAx ×ℜ∈= , 0x
{ } kn

kvvvV ×ℜ∈= ,...,, 21

kx
{ }kyyy ,...,, 21

ky ℜ∈
|||| bAVy −

{ } kn
kwwwW ×ℜ∈= ,...,, 21 0)(=− bAVyW T

y
nk <<

bAxr −= 00

Vyx ≈

A

Introduction to TOPS

Jacobian-free Newton-Krylov
� In the Jacobian-Free Newton-Krylov (JFNK)

method, a Krylov method solves the linear Newton
correction equation, requiring Jacobian-vector
products

� These are approximated by the Fréchet derivatives

(where is chosen with a fine balance between
approximation and floating point rounding error) or
automatic differentiation, so that the actual Jacobian
elements are never explicitly needed

� One builds the Krylov space on a true F’(u) (to
within numerical approximation)

)]()([1)(uFvuFvuJ −+≈ ε
ε

ε

Introduction to TOPS

Recall idea of preconditioning
� Krylov iteration is expensive in memory and in

function evaluations, so k must be kept small in
practice, through preconditioning the Jacobian with
an approximate inverse, so that the product matrix
has low condition number in

� Given the ability to apply the action of to a
vector, preconditioning can be done on either the
left, as above, or the right, as in, e.g., for matrix-
free:

)]()([1 11 uFvBuFvJB −+≈ −− ε
ε

bBxAB 11)(−− =
1−B

Introduction to TOPS

Philosophy of Jacobian-free NK
� To evaluate the linear residual, we use the true F’(u) ,

giving a true Newton step and asymptotic quadratic
Newton convergence

� To precondition the linear residual, we do anything
convenient that uses understanding of the dominant
physics/mathematics in the system and respects the
limitations of the parallel computer architecture and the
cost of various operations:

� combinations of operator-split Jacobians (for reasons of physics or
reasons of numerics)

� Jacobian of related discretization (for “fast” solves)
� Jacobian of lower-order discretization (for more stability, less storage)
� Jacobian with “lagged” values for expensive terms (for less computation

per degree of freedom)
� Jacobian stored in lower precision (for less memory traffic per

preconditioning step)
� Jacobian blocks decomposed for parallelism

Introduction to TOPS

Philosophy of Jacobian-free NK, cont.
� These motivations are not new; most large-scale

application codes also take “short cuts” on the
approximate Jacobian operator to be inverted – using
physical intuition, asymptotics, etc.

� The problem with many codes is that they do not
anywhere have an accurate global Jacobian operator;
they use only the approximate Jacobian

� This leads to a weakly nonlinearly converging “defect
correction method”

� Defect correction:

� in contrast to preconditioned Newton:

)()(11 kkk uFBuuJB −− −=δ

)(kk uFuB −=δ

Introduction to TOPS

Physics-based preconditioning
� In Newton iteration, one seeks to obtain a correction

(“delta”) to solution, by inverting the Jacobian matrix
on (the negative of) the nonlinear residual:

� A typical operator-split code also derives a “delta” to
the solution, by some implicitly defined means, through
a series of implicit and explicit substeps

� This implicitly defined mapping from residual to
“delta” is a natural preconditioner; see JCP ref for
shallow water equations and MHD system successes

� Software must accommodate this!

)()]([1 kkk uFuJu −−=δ

kk uuF δv)(

Introduction to TOPS

Operator-split preconditioning
� Subcomponents of a PDE operator often have special

structure that can be exploited if they are treated
separately

� Algebraically, this is identical to Schwarz domain
decomposition, by term instead of by subdomain

� Suppose and a preconditioner is to
be constructed, where and are each
“easy” to invert

� Form a preconditioned vector from as follows:

� Equivalent to replacing with
� First-order splitting error, yet often used as a solver!

RSIJ ++= −1τ
SI τ+ RI τ+

u

J SRRSI ττ +++−1

uSIRI 111)()(−−− ++ ττ

Introduction to TOPS

Operator-split preconditioning, cont.
� Suppose S is convection-diffusion and R is

reaction, among a collection of fields stored as
gridfunctions

� On a small regular 2D grid with a five-point
stencil:

� R is trivially invertible in block diagonal form
� S is invertible with one multilevel solve per field

J = S + R

Introduction to TOPS

� Preconditioners assembled from just the “strong”
elements of the Jacobian, alternating the source term and
the diffusion term operators, are competitive in
convergence rates with full block-ILU on the Jacobian

� particularly, since the decoupled scalar diffusion systems are amenable to
simple multigrid treatment – not as trivial for the coupled system

� The decoupled preconditioners store many fewer
elements and significantly reduce memory bandwidth
requirements and are expected to be much faster per
iteration when carefully implemented

� See “alternative block factorization” by Bank et al. in
JCP ref; incorporated into SciDAC TSI solver by
D’Azevedo

Operator-split preconditioning, cont.

Introduction to TOPS

Using Jacobian of related discretization

� To precondition a variable coefficient
operator, such as ∇·(α∇ •) , use ,
based on a constant coefficient average

� Brown & Saad (1980) showed that, because
of the availability of fast solvers, it may
even be acceptable to use to
precondition something like

2∇α

y
v

x
u

∂
•∂+

∂
•∂+•∇−)()()(2

2∇−

Introduction to TOPS

Using Jacobian of lower order discretization
� Orszag popularized the use of linear finite element

discretizations as preconditioners for high-order
spectral element discretizations in the 1970s; both
approach the same continuous operator

� It is common in CFD to employ first-order upwinded
convective operators as approximate inversions for
higher-order operators:

� better factorization stability
� smaller matrix bandwidth and complexity

� With Jacobian-free NK, we can have the best of both
worlds – a stable factorization/cheap solve and a true
Jacobian step

Introduction to TOPS

Using Jacobian with lagged terms
� Newton-chord methods (e.g., papers by Smooke et al.)

“freeze” the Jacobian matrices:
� saves Jacobian evaluation and factorization, which can be up to 90% of

the running time of the code in some apps
� however, nonlinear convergence degrades to linear rate

� In Jacobian-free NK, we can “freeze” some or all of the
terms in the Jacobian preconditioner, while always
accessing the action of the true Jacobian for the Krylov
matrix-vector multiply:

� still saves Jacobian work
� maintains asymptotically quadratic rate for nonlinear convergence

� See JCP ref for example with coupled edge plasma and
Navier-Stokes, showing five-fold improvement over full
Newton with constantly refreshed Jacobian on LHS,
versus JFNK with preconditioner refreshed once each ten
timesteps

Introduction to TOPS

Using Jacobian with lower precision elements
� Memory bandwidth is the critical architectural

parameter for sparse linear algebra computations
� Storing the preconditioner elements in single precision

effectively doubles memory bandwidth (and
potentially halves runtime) for this critical phase

� We still form the Jacobian-vector product with full
precision and “zero-pad” the preconditioner elements
back to full length in the arithmetic unit, so the
numerical quality of the Krylov subspace does not
degrade

Introduction to TOPS

Parallel (Schwarz) preconditioning
� Given , partition into

subvectors, corresp. to subdomains
of the domain of the PDE,
nonempty, possibly overlapping,
whose union is all of the elements of

bAx = x

iR

thi

thi

xRx ii =
T
iii ARRA =

ii
T
ii RARB 11 −−

∑=

Ω
iΩ

x

� Let Boolean rectangular
matrix extract the
subset of :

� Let The Boolean matrices are gather/scatter
operators, mapping between a global vector
and its subdomain support

x

Introduction to TOPS

Algorithm: Newton-Krylov-Schwarz

Newton
nonlinear solver

asymptotically quadratic

Krylov
accelerator

spectrally adaptive

Schwarz
preconditioner
parallelizable

Popularized in parallel Jacobian-free form under this name by
Cai, Gropp, Keyes & Tidriri (1994)

Introduction to TOPS

Part II:
Introducing “Terascale Optimal PDE

Simulations” (TOPS) ISIC
Nine institutions, five years, 24 co-PIs

Introduction to TOPS

� Enabling technologies groups to develop
reusable software and partner with application
groups

� In 2001 start-up, 51 projects share $57M/year
� Approximately one-third for applications
� A third for “integrated software infrastructure centers”
� A third for grid infrastructure and collaboratories

� Plus, two new 5 Tflop/s IBM SP machines
available for SciDAC researchers

Introduction to TOPS

SciDAC project characteristics

� Affirmation of importance of simulation
� for new scientific discovery, not just for “fitting” experiments

� Recognition that leading-edge simulation is
interdisciplinary

� no support for physicists and chemists to write their own software
infrastructure; must collaborate with math & CS experts

� Commitment to distributed hierarchical
memory computers

� new code must target this architecture type

� Requirement of lab-university collaborations
� complementary strengths in simulation
� 13 laboratories and 50 universities in first round of projects

Introduction to TOPS

What’s new in SciDAC library software?
� Philosophy of library usage

� complex algorithms with lots of callbacks to user
code (e.g., to physics routines by implicit solvers)

� extensibility
� polyalgorithms for adaptivity to applications and

architecture

� Resources for development,
maintenance, and support

� not just for “dissertation scope” ideas

� Experience on terascale scale computers

Introduction to TOPS

Interacting with ISICs

Indicates “dependence on”

Applications

APDEC TSTT TOPS SDM PERC CCA SS

Introduction to TOPS

Interacting with ISICs – one view

Indicates “dependence on”

Applications

PERC, CCA

TSTTAPDEC

TOPS

SS

SDM

Introduction to TOPS

34 apps groups
(BER, BES,FES,
HENP)

7 ISIC groups
(4 CS, 3 Math)

10 grid, data
collaboratory
groups

adaptive
gridding,
discretization

solvers

systems
software,
component
architecture,
performance
engineering,
data
management

0),,,(=ptxxf �

0),(=pxF

bAx =
BxAx λ=

..),(min tsux
u

φ
0),(=uxF

software
integration

performance
optimization

Introduction to TOPS

Who we are…

… the PETSc and TAO people

… the hypre and PVODE people

… the SuperLU and PARPACK people

… as well as the builders of other widely used packages …

Introduction to TOPS

Plus some university collaborators

Our DOE lab collaborations predate SciDAC by many years.

Demmel et al. Manteuffel et al. Dongarra et al.

Keyes et al.Ghattas et al.Widlund et al.

Introduction to TOPS

You may know our “Templates”

www.siam.orgwww.netlib.org

… but what we are doing now goes “in between” and far beyond!

Introduction to TOPS

Scope for TOPS
� Design and implementation of “solvers”

� Time integrators

� Nonlinear solvers

� Constrained optimizers

� Linear solvers

� Eigensolvers

� Software integration
� Performance optimization

0),,,(=ptxxf �

0),(=pxF

bAx =

BxAx λ=

0,0),(..),(min ≥= uuxFtsux
u

φ

Optimizer

Linear
solver

Eigensolver

Time
integrator

Nonlinear
solver

Indicates
dependence

Sens. Analyzer

(w/ sens. anal.)

(w/ sens. anal.)

Introduction to TOPS

Motivation for TOPS
� Not just algorithms, but vertically

integrated software suites
� Portable, scalable, extensible, tunable

implementations
� Motivated by representative apps,

intended for many others
� Starring hypre and PETSc, among other

existing packages
� Driven by three applications SciDAC

groups
� LBNL-led “21st Century Accelerator”

designs
� ORNL-led core collapse supernovae

simulations
� PPPL-led magnetic fusion energy

simulations

� Coordinated with other ISIC SciDAC
groups

� Many DOE mission-critical systems are
modeled by PDEs

� Finite-dimensional models for infinite-
dimensional PDEs must be large for
accuracy

� “Qualitative insight” is not enough
� Simulations must resolve policy

controversies, in some cases

� Algorithms are as important as
hardware in supporting simulation

� Easily demonstrated for PDEs in the
period 1945–2000

� Continuous problems provide exploitable
hierarchy of approximation models,
creating hope for “optimal” algorithms

� Software lags both hardware and
algorithms

Introduction to TOPS

Keyword: “Optimal”
� Convergence rate nearly independent of

discretization parameters
� Multilevel schemes for rapid linear convergence of

linear problems
� Newton-like schemes for quadratic convergence of

nonlinear problems

� Convergence rate as independent as
possible of physical parameters

� Continuation schemes
� Physics-based preconditioning

unscalable

scalable

Problem Size (increasing with number of
processors)

Ti
m

e
to

 S
ol

ut
io

n

200

150

50

0

100

10 100 10001

Steel/rubber composite
Parallel multigrid c/o M. Adams, Berkeley-Sandia

The solver is a
key part, but
not the only
part, of the
simulation that
needs to be
scalable

Introduction to TOPS

Why Optimal?
� The more powerful the computer, the greater the

importance of optimality
� Example:

� Suppose Alg1 solves a problem in time CN2, where N is the
input size

� Suppose Alg2 solves the same problem in time CN
� Suppose that the machine on which Alg1 and Alg2 run has

10,000 processors, on which they have been parallelized to run

� In constant time (compared to serial), Alg1 can run
a problem 100X larger, whereas Alg2 can run a
problem 10,000X larger

Introduction to TOPS

Why Optimal?, cont.
� Alternatively, filling the machine’s memory, Alg1 requires

100X time, whereas Alg2 runs in constant time
� Is 10,000 processors a reasonable expectation?

� Yes, we have it today (ASCI White)!

� Could computational scientists really use 10,000X?
� Of course; we are approximating the continuum
� A grid for weather prediction allows points every 1km versus every

100km on the earth’s surface
� In 2D 10,000X disappears fast; in 3D even faster

� However, these machines are expensive (Japan’s Earth
Simulator is ~$500M, plus ongoing operating costs), and
optimal algorithms are the only algorithms that we should
afford to run on them

Introduction to TOPS

Hypre’s AMG in SciDAC app
� PETSc-based PPPL code M3D has been retrofit with Hypre’s parallel

algebraic MG solver of Ruge-Stueben type
� Iteration count results below are averaged over 19 different PETSc

SLESSolve calls in initialization and one timestep loop for this operator split
unsteady code, abcissa is number of procs in scaled problem; problem size
ranges from 12K to 303K unknowns (approx 4K per processor)

0

100

200

300

400

500

600

700

3 12 27 48 75

ASM-GMRES
AMG-FMGRES

iterations

size or procs

Introduction to TOPS

Hypre’s AMG in SciDAC app, cont.
� Scaled speedup timing results below are summed over 19 different PETSc

SLESSolve calls in initialization and one timestep loop for this operator split
unsteady code

� Majority of AMG cost is coarse-grid formation (preprocessing) which does not
scale as well as the inner loop V-cycle phase; in production, these coarse
hierarchies will be saved for reuse (same linear systems are called in each timestep
loop), making AMG much less expensive and more scalable

0

10

20

30

40

50

60

3 12 27 48 75

ASM-GMRES
AMG-FMGRES
AMG inner (est)

size or procs

time

Introduction to TOPS

Fusion Energy Sciences (FES)
SciDAC: Extended MHD

Center for Extended
Magnetohydrodynamic Modeling
This research project will develop computer codes that will
enable a realistic assessment of the mechanisms leading to
disruptive and other stability limits in the present and next
generation of fusion devices. With an improvement in the
efficiency of codes and with the extension of the leading 3D
nonlinear magneto-fluid models of hot, magnetized fusion
plasmas, this research will pioneer new plasma simulations
of unprecedented realism and resolution. These simulations
will provide new insights into low frequency, long-
wavelength non-linear dynamics in hot magnetized
plasmas, some of the most critical and complex phenomena
in plasma and fusion science. The underlying models will
be validated through cross-code and experimental
comparisons.
Steve Jardin
PPPL

Introduction to TOPS

It’s 2002; do you know what your solver is up to?
Has your solver not been updated in the past five

years?
Is your solver running at 1-10% of machine peak?
Do you spend more time in your solver than in your

physics?
Is your discretization or model fidelity limited by the

solver?
Is your time stepping limited by stability?
Are you running loops around your analysis code?
Do you care how sensitive to parameters your results

are?
If the answer to any of these questions is “yes”, you are a potential customer!

Introduction to TOPS

What we believe
� Many of us came to work on solvers through

interests in applications
� What we believe about …

� applications
� users
� solvers
� legacy codes
� software

… will impact how comfortable you are
collaborating with us

Introduction to TOPS

What we believe about apps
� Solution of a system of

PDEs is rarely a goal in
itself

� PDEs are ultimately solved to
derive various outputs from
specified inputs (e.g., drag vs
wingshape)

� Scientific goal is characterization
of a response surface or a design
or control strategy

� Together with analysis,
sensitivities and stability are
often desired

⇒ Software tools for PDE
solution should also
support related follow-on
desires

� No general purpose PDE
solver can anticipate all
needs

� Why we have national
laboratories, not numerical
libraries for PDEs today

� A PDE solver improves with user
interaction

� Pace of algorithmic development
is very rapid

⇒ Extensibility is important

Introduction to TOPS

What we believe about users
� Solvers are used by people

of varying numerical
backgrounds

� Some expect MATLAB-like
defaults

� Others want to control
everything, e.g., even varying
the type of smoother and
number of smoothings on
different levels of a multigrid
algorithm

⇒ Multilayered software
design is important

� Users’ demand for
resolution is virtually
insatiable

� Relieving resolution
requirements with modeling
(e.g., turbulence closures,
homogenization) only defers
the demand for resolution to
the next level

� Validating such models
requires high resolution

⇒ Processor scalability and
algorithmic scalability
(optimality) are critical

Introduction to TOPS

What we believe about legacy code
� Porting to a scalable

framework does not mean
starting from scratch

� High-value meshing and
physics routines in original
languages can be
substantially preserved

� Partitioning, reordering and
mapping onto distributed
data structures (that we may
provide) adds code but little
runtime

⇒ Distributions should
include code samples
exemplifying “separation
of concerns”

� Legacy solvers may be
limiting resolution,
accuracy, and generality of
modeling overall

� Replacing the solver may
“solve” several other issues

� However, pieces of the legacy
solver may have value as part
of a preconditioner

⇒ Solver toolkits should
include “shells” for
callbacks to high value
legacy routines

Introduction to TOPS

What we believe about solvers
� Solvers are employed as

part of a larger code
� Solver library is not only library

to be linked
� Solvers may be called in

multiple, nested places
� Solvers typically make callbacks
� Solvers should be swappable

⇒ Solver threads must not
interfere with other
component threads,
including other active
instances of themselves

� Solvers are employed in
many ways over the life
cycle of an applications
code

� During development and
upgrading, robustness (of the
solver) and verbose diagnostics
are important

� During production, solvers are
streamlined for performance

⇒ Tunability is important

Introduction to TOPS

What we believe about software
� A continuous operator may

appear in a discrete code in
many different instances

� Optimal algorithms tend to be
hierarchical and nested iterative

� Processor-scalable algorithms
tend to be domain-decomposed
and concurrent iterative

� Majority of progress towards
desired highly resolved, high
fidelity result occurs through
cost-effective low resolution, low
fidelity parallel efficient stages

⇒ Operator abstractions and
recurrence are important

� Hardware changes many
times over the life cycle of a
software package

� Processors, memory, and
networks evolve annually

� Machines are replaced every
3-5 years at major DOE
centers

� Codes persist for decades

⇒ Portability is critical

Introduction to TOPS

Why is TOPS needed?
� What is wrong?
� Many widely used libraries are

“behind the times” algorithmically
� Logically innermost (solver) kernels

are often the most computationally
complex — should be designed
from the inside out by experts and
present the right “handles” to users

� Today’s components do not “talk
to” each other very well

� Mixing and matching procedures
too often requires mapping data
between different storage
structures (taxes memory and
memory bandwidth)

� What exists already?
� Adaptive time integrators for stiff

systems: variable-step BDF
methods

� Nonlinear implicit solvers:
Newton-like methods, FAS
multilevel methods

� Optimizers (with constraints):
quasi-Newton RSQP methods

� Linear solvers: subspace
projection methods (multigrid,
Schwarz, classical smoothers),
Krylov methods (CG, GMRES),
sparse direct methods

� Eigensolvers: matrix reduction
techniques followed by tridiagonal
eigensolvers, Arnoldi solvers

Introduction to TOPS

Nonlinear Solvers
� What’s ready in TOPS now?
� KINSOL (LLNL) and PETSc (ANL)
� Preconditioned Newton-Krylov (NK)

methods with MPI-based objects
� Asymptotically nearly quadratically

convergent and mesh independent
� Matrix-free implementations (FD

and AD access to Jacobian elements)
� Thousands of direct downloads

(PETSc) and active worldwide
“friendly user” base

� Interfaced with hypre
preconditioners (KINSOL)

� Sensitivity analysis extensions
(KINSOL)

� 1999 Bell Prize for unstructured
implicit CFD computation at 0.227
Tflop/s on a legacy F77 NASA code

� What’s next?
� Semi-automated continuation schemes

(e.g., pseudo-transience)
� Additive-Schwarz Preconditioned Inexact

Newton (ASPIN)
� Full Approximation Scheme (FAS)

multigrid
� Polyalgorithmic combinations of ASPIN,

FAS, and NK-MG, together with new
linear solvers/preconditioners

� Automated Jacobian calculations with
parallel colorings

� New grid transfer and nonlinear coarse
grid operators

� Guidance of trade-offs for
cheap/expensive residual function calls

� Further forward and adjoint sensitivities

Introduction to TOPS

Optimizers
� What’s ready in TOPS now?
� TAO (ANL) and VELTISTO (CMU)
� Bound-constrained and equality-

constrained optimization
� Achieve optimum in number of PDE

solves independent of number of
control variables

� TAO released 2000, VELTISTO 2001
� Both built on top of PETSc
� Applied to problems with thousands of

controls and millions of constraints on
hundreds of processors

� Used for design, control, parameter
identification

� Used in nonlinear elasticity, Navier-
Stokes, acoustics

� State-of-art Lagrange-Newton-Krylov-
Schur algorithmics

� What’s next?
� Extensions to inequality constraints

(beyond simple bound constraints)
� Extensions to time-dependent

PDEs, especially for inverse
problems

� Multilevel globalization strategies
� Toleration strategies for

approximate Jacobians and
Hessians

� “Hardening” of promising control
strategies to deal with negative
curvature of Hessian

� Pipelining of PDE solutions into
sensitivity analysis

Introduction to TOPS

Linear Solvers
� What’s ready in TOPS now?
� PETSc (ANL), hypre (LLNL),

SuperLU (UCB), Oblio (ODU)
� Krylov, multilevel, sparse direct
� Numerous preconditioners, incl.

BNN, SPAI, PILU/PICC
� Mesh-independent convergence for

ever expanding set of problems
� hypre used in several ASCI codes

and milestones to date
� SuperLU in ScaLAPACK/PETSc
� State-of-art algebraic multigrid

(hypre) and supernodal (SuperLU)
efforts

� Algorithmic replacements alone yield
up to two orders of magnitude in
DOE apps, before parallelization

� What’s next?
� Hooks for physics-based operator-

split preconditionings
� AMGe, focusing on incorporation of

neighbor information and strong
cross-variable coupling

� Spectral AMGe for problems with
geometrically oscillatory but
algebraically smooth components

� FOSLS-AMGe for saddle-point
problems

� Hierarchical basis ILU
� Incomplete factorization adaptations

of SuperLU
� Convergence-enhancing orders for

ILU
� Stability-enhancing orderings for

sparse direct methods for indefinite
problems

Introduction to TOPS

Eigensolvers
� What’s ready in TOPS now?
� LAPACK and ScaLAPACK

symmetric eigensolvers (UCB,
UTenn, LBNL)

� PARPACK for sparse and
nonsymmetric problems

� Reductions to symmetric
tridiagonal or Hessenberg form,
followed by new “Holy Grail”
algorithm

� Holy Grail optimal (!): O(kn)
work for k n-dimensional
eigenvectors

� What’s next?
� Direct and iterative linear

solution methods for shift-
invert Lanczos for selected
eigenpairs in large symmetric
eigenproblems

� Jacobi-Davidson projection
methods for selected eigenpairs

� Multilevel methods for
eigenproblems arising from
PDE applications

� Hybrid multilevel/Jacobi-
Davidson methods

Introduction to TOPS

Abstract Gantt Chart for TOPS

Algorithmic Development

Research Implementations

Hardened Codes

Applications Integration

Dissemination

time

e.g.,PETSc

e.g.,TOPSLib

e.g., ASPIN

Each color module represents an algorithmic research idea on its way to becoming part of a supported
community software tool. At any moment (vertical time slice), TOPS has work underway at multiple levels.
While some codes are in applications already, they are being improved in functionality and performance as
part of the TOPS research agenda.

Introduction to TOPS

Nonlinear Schwarz preconditioning
� Nonlinear Schwarz has Newton both inside and

outside and is fundamentally Jacobian-free
� It replaces with a new nonlinear system

possessing the same root,
� Define a correction to the partition (e.g.,

subdomain) of the solution vector by solving the
following local nonlinear system:

where is nonzero only in the
components of the partition

� Then sum the corrections:

0)(=uF
0)(=Φ u

thi

thi

)(uiδ

0))((=+ uuFR ii δ
n

i u ℜ∈)(δ

)()(uu ii δ∑≡Φ

Introduction to TOPS

Nonlinear Schwarz, cont.
� It is simple to prove that if the Jacobian of F(u) is

nonsingular in a neighborhood of the desired root
then and have the same unique
root

� To lead to a Jacobian-free Newton-Krylov algorithm
we need to be able to evaluate for any :

� the residual
� the Jacobian-vector product

� Remarkably, (Cai-Keyes, SISC 2002) it can be shown
that

where and
� All required actions are available in terms of !

0)(=Φ u

nvu ℜ∈,
)()(uu ii δ∑=Φ

0)(=uF

vu ')(Φ

JvRJRvu ii
T
ii)()(1' −

∑≈Φ
)(' uFJ = T

iii JRRJ =
)(uF

Introduction to TOPS

Experimental example of nonlinear Schwarz

Newton’s method Additive Schwarz Preconditioned Inexact
Newton (ASPIN)

Difficulty at
critical Re

Stagnation
beyond

critical Re

Convergence
for all Re

Introduction to TOPS

Goals/Success Metrics

� Understand range of algorithmic options and their tradeoffs
(e.g., memory versus time)

� Can try all reasonable options easily without recoding or
extensive recompilation

� Know how their solvers are performing
� Spend more time in their physics than in their solvers
� Are intelligently driving solver research, and publishing

joint papers with TOPS researchers
� Can simulate truly new physics, as solver limits are steadily

pushed back

TOPS users —

Introduction to TOPS

Expectations TOPS has of Users
� Be willing to experiment with novel algorithmic choices –

optimality is rarely achieved beyond model problems
without interplay between physics and algorithmics!

� Adopt flexible, extensible programming styles in which
algorithmic and data structures are not hardwired

� Be willing to let us play with the real code you care about,
but be willing, as well to abstract out relevant compact tests

� Be willing to make concrete requests, to understand that
requests must be prioritized, and to work with us in
addressing the high priority requests

� If possible, profile, profile, profile before seeking help

Introduction to TOPS

http://www.math.odu.edu/~keyes/scidac
dkeyes@odu.edu

TOPS may be for you!

For more information ...

